
Nanodiamanty - více a levněji
Tým chemiků z Akademie věd ČR přišel s převratnou metodou umožňující snadno a levně produkovat ozářené nanodiamanty a jiné materiály využitelné pro vysoce citlivou diagnostiku chorob, včetně nádorových onemocnění. Jejich článek nyní publikoval prestižní vědecký časopis Nature Communications.
Prvním spoluautorem článku je Jan Havlík, který v současné době působí na VŠCHT na Ústavu učitelství a humanitních věd. Na experimentální a analytické části se podílela také Helena Raabová, studentka doktorského studia na Ústavu chemie pevných látek. Celý výzkum byl uskutečněn pod vedením Petra Cíglera, který je úspěšným absolventem naší školy v oboru analytické chemie.
- O objevu informoval ve svém článku i Český rozhlas
Diagnostika chorob a porozumění procesům probíhajícím v buňkách na molekulární úrovni vyžaduje citlivé a selektivní diagnostické nástroje. Vědci jsou dnes schopni sledovat magnetická a elektrická pole v buňkách s rozlišením v řádu desítek nanometrů a s vysokou citlivostí díky krystalovým poruchám v částicích některých anorganických materiálů. Téměř ideálním materiálem pro tyto účely je diamant. Na rozdíl od šperkařských diamantů se ale pro aplikace v diagnostice a nanomedicíně používají asi milionkrát menší diamanty – nanodiamanty, které se připravují synteticky z grafitu za vysokých tlaků a teplot.
Čistý nanodiamant však o svém okolí mnoho nesdělí. Jeho krystalová mřížka se musí nejprve řízeně poškodit tak, aby v ní vznikly zvláštní poruchy (tzv. centra dusík-vakance) umožňující optické čtení. Poškození se vytváří nejčastěji ozářením nanodiamantu rychlými ionty v částicových urychlovačích. Tyto urychlené ionty jsou schopny z krystalové mřížky nanodiamantu vyrazit atomy uhlíku, po nichž tak zůstanou v mřížce „díry“ (vakance). Ty se poté při vysokých teplotách spárují s atomy dusíku, které jsou v krystalu přítomné jako nečistoty. Nově vzniklá centra dusík-vakance jsou zdrojem fluorescence, kterou je pak možné pozorovat. Právě díky této fluorescenci mají nanodiamanty obrovský potenciál využití v medicínských i technických aplikacích. Zásadním omezením pro využití těchto materiálů v širší praxi je ale velmi drahé a málo efektivní ozařování ionty v urychlovači, které neumožňuje přípravu většího množství tohoto mimořádně cenného materiálu.
Tým vědců z několika výzkumných pracovišť pod vedením Petra Cíglera a Martina Hrubého publikoval v časopise Nature Communications zcela nový způsob ozařování nanokrystalů. Namísto drahého a dlouhého ozařování v urychlovači využili vědci velmi krátké a o mnoho levnější ozáření v jaderném reaktoru.
Tak jednoduché to ale nebylo – vědci museli využít trik, kdy neutronové záření v reaktoru štěpí atomy bóru na lehké a velmi rychle letící ionty hélia a lithia. Nanokrystaly se nejprve musí rozptýlit v tavenině oxidu boritého a následně se ozáří neutrony v jaderném reaktoru. Záchytem neutronů a rozpadem jader bóru vzniká hustá sprcha iontů hélia a lithia, které v nanokrystalech mají stejný efekt jako tytéž ionty produkované urychlovačem – řízenou tvorbu krystalových poruch. Díky vysoké hustotě této částicové sprchy a možnosti ozářit v reaktoru mnohem větší množství materiálu je možné snadno a daleko levněji připravit najednou desítky gramů vzácného nanomateriálu, což je přibližně tisíckrát více, než kolik byli vědci dosud schopni získat při srovnatelném ozařování v urychlovačích. Tato metoda se ukázala jako úspěšná nejen pro tvorbu poruch v mřížce nanodiamantu, ale i na dalším nanomateriálu, karbidu křemíku. Vědci proto předpokládají, že by metoda mohla sloužit univerzálně pro produkci nanočástic s definovanými poruchami ve velkém měřítku.
Nová metoda vychází z principu využívaného při terapii bórovým neutronovým záchytem (boron neutron capture therapy – BNCT), kdy je pacientovi podána sloučenina bóru. Po jejím nahromadění v nádoru je pacient ozářen neutrony, které způsobí štěpení jader bóru na ionty hélia a lithia. Ty následně zničí nádorovou tkáň, v níž je bór nahromaděn. Díky principu známému z experimentální terapie nádorů se tak nyní povedlo vytvořit cestu pro efektivní výrobu nanomateriálů s vysokým potenciálem využití mimo jiné i v diagnostice nádorových onemocnění.
Zdroj - tisková zpráva ÚOCHB AV ČR
Článek: Jan Havlík, Vladimíra Petráková, Jan Kučka, Helena Raabová, Dalibor Pánek, Václav Štěpán, Zuzana Zlámalová Cílová, Philipp Reineck, Jan Štursa, Jan Kučera, Martin Hrubý a Petr Cígler: Extremely rapid isotropic irradiation of nanoparticles with ions generated in situ by a nuclear reaction. Nature Communications 2018, 9, 4467. DOI: 10.1038/s41467-018-06789-8.